wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

sin1 (2x+24x2+8x+13 )dx =

Open in App
Solution

2x+24x2+8x+3=2(x+1)4(x2(4+1)+32
=2(x+1)4(x+1)2+32
set x+1=32tanθ
=232tanθ4×94tan2θ+32=3tanθ32(1+tan2θ)
=3tanθ3sinθ=sinθcosθcosθ=sinθ
=sin1(2x+24x2+θx+13)=sin1(sinθ)
=θ
x+1=32tanθ
dx=32sin2θdθ
tanθ=23(x+1)
sinθ=1+tan2θ
=1+49(x+1)2
=134x2+8x+13
I=θ32sin2θdθ
=32θsec2θdθ
=32[θtanθtanθdθ]
=32[θtanθlnsecθ]+c
=32[23(x+1)tan{23(x+1)} ln(4n2+dn+133)+c
=3223(n+1)tan1{23(n+1)}32[ln4n2+dn+13ln3]+c
=(x+1)tan1{23(n+1)}3212ln(4n2+dn+13)+32ln3+c New laws
=(x+1)tan1{23(x+1)}34ln(4n2+dn+13)+c2.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Substitution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon