∫sin2/3xcos3xdx
=∫sin2/3xcos2xcosxdx
=∫sin2/3x(1−sin2x)cosxdx
=∫sin2/3xcosxdx−∫sin2/3+2xcosxdx
=∫sin2/3xcosxdx−∫sin5/2xcosxdx
Let t=sinx
⇒dt=cosxdx
=∫t2/3dt−∫t5/2dt
=t2/3+12/3+1−t5/2+15/2+1+c
=t5/25/3−t7/27/2+c where c is the constant of integration
=3(sinx)5/35−2(sinx)7/27+c
=3sin5/3x5−27sin7/2x+c where t=sinx.