The correct option is A 2(√tanx+1)2[13(√tanx+1)−12]+c
I=∫(√sinx+√cosx)−4dx=∫dx[√cosx(√tanx+1)]4=∫dxcos2x(√tanx+1)4=∫sec2xdx(√tanx+1)4
Put √tanx+1=y⇒12√tanxsec2xdx=dy⇒sec2xdx=2√tanxdy=2(y−1)dyI=∫1y4.2(y−1)dy=2∫(1y3−1y4)dy=2[−12y2+13y3]+c=2y2[13y−12]+c=2(√tanx+1)2[13(√tanx+1)−12]+c