∫xsin−1xdxLet x=sinθ
dx=cosθdθ
Substituting values, we get
∫xsin−1xdx=∫sinθsin−1(sinθ)cosθdθ
=∫sinθθcosθdθ
[ Since sin−1(sinθ)=θ ]
=12∫θ(2sinθcosθ)dθ
=12∫θsin2θdθ [ Since, 2sinxcosx=sin2x ]
=12[θ∫sin2θdθ−∫(dθdθ∫sin2θ)dθ]
=12[θ−(cos2θ)2−∫1.−(cos2θ)2dθ]
=12[−θ2cos2θ+12∫cos2θdθ]
=12[−θ2cos2θ+12sin2θ2]+c
=−θ4cos2θ+18sin2θ+c
=−θ4(1−2sin2θ)+18×2sinθcosθ+c
=−θ4(1−2sin2θ)+14sinθcosθ+c
=−θ4(1−2sin2θ)+14sinθ√1−sin2θ+c
=−sin−1x4(1−2x2)+x4√1−x2+c [ Since, θ=sin−1x ]
=(2x2−1)4sin−1x+x4√1−x2+c