wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

xsin1xdx

Open in App
Solution

xsin1xdx
Let x=sinθ
dx=cosθdθ
Substituting values, we get
xsin1xdx=sinθsin1(sinθ)cosθdθ

=sinθθcosθdθ
[ Since sin1(sinθ)=θ ]

=12θ(2sinθcosθ)dθ

=12θsin2θdθ [ Since, 2sinxcosx=sin2x ]

=12[θsin2θdθ(dθdθsin2θ)dθ]

=12[θ(cos2θ)21.(cos2θ)2dθ]

=12[θ2cos2θ+12cos2θdθ]

=12[θ2cos2θ+12sin2θ2]+c

=θ4cos2θ+18sin2θ+c

=θ4(12sin2θ)+18×2sinθcosθ+c

=θ4(12sin2θ)+14sinθcosθ+c

=θ4(12sin2θ)+14sinθ1sin2θ+c

=sin1x4(12x2)+x41x2+c [ Since, θ=sin1x ]

=(2x21)4sin1x+x41x2+c




flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Parts
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon