∫02πsinx+sinxdx=
0
4
8
1
Explanation for correct answer:
Integrating ∫02πsinx+sinxdx:
Let I=∫02πsinx+sinxdx
Using the property of mod we can write the above integral in a simplified way shown below
I=∫02πsinxdx+∫02πsinxdx=-cosx02π+∫0πsinxdx+∫π2π-sinxdx∵∫sinxdx=-cosx=-cos2π--cos0+-cosx0π--cosxπ2π=-cos2π+cos0+-cosπ+cos0--cos2π+cosπ=-cos2π+cos0-cosπ+cos0+cos2π-cosπ=2cos0-2cosπ=2×1-2×(-1)I=4
Therefore, the value of ∫02πsinx+sinxdx= 4
Hence, option (B) is the correct answer.