∫0∞dxx+x2+13=
38
18
-38
None of these
Explanation for Correct answer:
I=∫0∞dxx+x2+13
Using the substitution method to solve, we get
x=tanθ⇒dx=sec2θ.dθ
limits
∫0∞dxx+x2+13=∫0π2sec2θ.dθtanθ+tan2θ+13
=∫0π2sec2θ.dθtanθ+sec2θ3∵sec2θ=tan2θ+1=∫0π2sec2θ.dθtanθ+secθ3=∫0π2sec2θ.dθsinθcosθ+1cosθ3∵tanθ=sinθcosθ;secθ=1cosθ=∫0π2sec2θ.dθ1cos3θ1+sinθ3=∫0π2sec2θ.dθsec3θ1+sinθ3=∫0π2dθsecθ1+sinθ3=∫0π2dθsecθ1+sinθ3=∫0π2cosθdθ1+sinθ3∵secθ=1cosθ
t=1+sinθ⇒dt=cosθ.dθ
=∫12dtt3=-12t-212=-122-2-1-2=-1214-1=-12-34=38
Hence, option (A) is the correct answer.