∫0λyy+λ3dy=
232-2λλ
232+2λλ
132-2λλ
132+2λλ
Explanation for the Correct Answer:
Finding the value for the given integration:
I=∫0λyy+λ3dy
Using the substitution method, we get
z2=y+λ⇒2zdz=dy
limits
=∫λ2λ2zz2-λdzz2=∫λ2λ2zz2-λdzz=2∫λ2λz2-λdz=2z33-zλλ2λ=22λ33-2λ.λ-λ33-λ.λ=22λ2λ3-2λ.λ-λλ3-λ.λ=2λλ22-32-1+33=2λλ-2+23=2λλ32-2
Hence, option (A) is the correct answer.
Evaluate the following expression forx=-1,y=-2,z=3
xy+yz+zx
If the distance between the plane, 23x−10y−2z+48=0 and the plane containing the lines x+12=y-34=z+13 and x+32=y+26=z-1λ(λ∈ℝ) is equal to k633 then k is equal to