∫0π2logsinxdx=
-πlog2
πlog2
-π2log2
π2log2
Explanation for Correct answer:
I=∫0π2logsinxdx→(i)
Also,
I=∫0π2logsinπ2-xdxI=∫0π2logcosxdx→(ii)
Add (i) and (ii)
2I=∫0π2logcosx+logsinxdx2I=∫0π2log(cosx.sinx)dx∵loga+logb=logab2I=∫0π2logsin2x2dx∵sin2x=2sinxcosx2I=∫0π2logsin2x-log2dx∵loga-logb=logab2I=∫0π2logsin2xdx-∫0π2log2dx2I=∫0π2logsin2xdx-x0π2log22I=∫0π2logsin2xdx-π2log2
Let 2x=z⇒2dx=dz
Limits x=0⇒z=0;x=π2⇒z=π
2I=12∫0πlogsinzdz-π2log22I=12×2∫0π2logsinzdz-π2log2∵∫02af(x)dx=∫0af(x)dxiff(2a-x)=f(x)2I=I-π2log2from(i)I=-π2log2
Hence, option (C) is the correct answer.
Evaluate :cos48°-sin42°