wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

0π2logsinxdx=


A

-πlog2

No worries! We‘ve got your back. Try BYJU‘S free classes today!
B

πlog2

No worries! We‘ve got your back. Try BYJU‘S free classes today!
C

-π2log2

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D

π2log2

No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C

-π2log2


Explanation for Correct answer:

I=0π2logsinxdx(i)

Also,

I=0π2logsinπ2-xdxI=0π2logcosxdx(ii)

Add (i) and (ii)

2I=0π2logcosx+logsinxdx2I=0π2log(cosx.sinx)dxloga+logb=logab2I=0π2logsin2x2dxsin2x=2sinxcosx2I=0π2logsin2x-log2dxloga-logb=logab2I=0π2logsin2xdx-0π2log2dx2I=0π2logsin2xdx-x0π2log22I=0π2logsin2xdx-π2log2

Let 2x=z2dx=dz

Limits x=0z=0;x=π2z=π

2I=120πlogsinzdz-π2log22I=12×20π2logsinzdz-π2log202af(x)dx=0af(x)dxiff(2a-x)=f(x)2I=I-π2log2from(i)I=-π2log2

Hence, option (C) is the correct answer.


flag
Suggest Corrections
thumbs-up
34
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 5
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon