∫0π4log1+tanxdx=
π8loge2
π4log2e
π4loge2
π8loge12
Explanation for Correct answer:
Finding the value of the given integral,
Let I=∫0π4log1+tanxdx→(i)
We know that, ∫abfxdx=∫abfa+b-xdx
Replace x→0+π4-xreplacebyupperlimit+lowerlimit-x
I=∫0π4log1+tan0+π4-xdx=∫0π4log1+tanπ4-tanx1+tanπ4tanxdx∵tanA-B=tanA-tanB1-tanAtanB=∫0π4log1+1-tanx1+tanxdx∵tanπ4=1=∫0π4log1+tanx+1-tanx1+tanxdx=∫0π4log21+tanxdx=∫0π4log2-log(1+tanx)dx→(ii)
Adding equations (i) and (ii), we get
2I=∫0π4log(1+tanx)dx+∫0π4log2-log(1+tanx)dx=log2∫0π4dx=log2x0π4=π4log2
2I=π4log2I=π8loge2
Hence, option (A) is the correct answer.