∫-111-xdx=
-2
0
2
4
Explanation for correct options:
Finding the value for the given integral:
Consider the given equation as,
I=∫-111-xdx
Integrate I as,
I=∫-111-xdxI=x-x22-11I=1-122--1--122I=1-12+1+12I=2
Therefore, the correct answer is Option C.
The general solution of a differential equation of the type dxdy+P1x=Q1 is
(a) ye∫P1 dy=∫(Q1e∫P1 dy)dy+C
(b) ye∫P1 dx=∫(Q1e∫P1 dx)dx+C
(c) xe∫P1 dy=∫(Q1e∫P1 dy)dy+C
(d) xe∫P1 dx=∫(Q1e∫P1 dx)dx+C