∫2k2x+1dx=6, then k=
4
-2
-3
3
Explanation for the correct option:
Finding the value for the given integral:
Consider ∫2k2x+1dx=6
⇒ 2∫2kxdx+∫2k1dx=6
⇒ 2x222k+x2k=6
⇒ 2k22-222+k-2=6
⇒ k2-4+k-2=6
⇒ k2+k-12=0
⇒ k2+4k-3k-12=0
⇒ k+4k-3=0
⇒ k=-4,3
Thus, option D is the correct answer.