∫5101x-1x-2dx=
log2732
log3227
log89
log34
Explanation for the correct option:
Finding the value for the given integral:
Let I=∫5101x-1x-2dx……i
Consider 1x-1x-2=Ax-1+Bx-2 integrationbyparts
⇒ 1x-1x-2=Ax-2+Bx-1x-1x-2
⇒ 1=Ax-2A+Bx-B
⇒ 1=A+Bx+-2A-B
⇒ A+B=0……ii
⇒ -2A-B=1……ii
on solving the equation ii and (iii) we get
A=-1
B=1
Therefore i becomes
⇒ I=∫510-1x-1+1x-2dx
=-logx-1+logx-2510
=logx-2x-1510
=log10-210-1-log5-25-1
=log89-log34
=log3227
Thus, option B is the correct answer.
The general solution of a differential equation of the type dxdy+P1x=Q1 is
(a) ye∫P1 dy=∫(Q1e∫P1 dy)dy+C
(b) ye∫P1 dx=∫(Q1e∫P1 dx)dx+C
(c) xe∫P1 dy=∫(Q1e∫P1 dy)dy+C
(d) xe∫P1 dx=∫(Q1e∫P1 dx)dx+C
If ∫fxdx=ψx, then ∫x5fx3dx=