∫abxxdx, where a<0<b=
b-a
b+a
a-b
None of these
Explanation for the correct option:
Finding the value for the given integral:
Let I=∫abxxdx, where a<0<b
=∫a0xxdx+∫0bxxdx
=∫a0-xxdx+∫0bxxdx sincex=x,x≥0-x,x<0
=∫a0-1dx+∫0bdx
=-xa0+x0b
=a+b
=b-a
Thus, option A is the correct answer.