∫17-x2dx=
127log7+x7-x+C
sin-1x7+C
logx+x2-7+C
127logx-7x+7+C
Explanation for the correct answer:
Finding the value for the given integral:
The given equation is∫17-x2dx
Substituting the value of x=7sinu
⇒dx=7cosudu
∫17-x2dx=∫17-(7sinu)2dx=∫17(1-sin2u)dx[∵1-sin2u=cos2u]=∫17cos2udx=∫17cosudx[∵du=dx7cosu]=∫du=u+C
where,
x=7sinu⇒sinu=x7⇒u=sin-1x7
Therefore, ∫17-x2dx=sin-1x7+C
Hence, option (B) is the correct answer.
Determine whether the following numbers are in proportion or not:
13,14,16,17