∫1xlogxdx=
loge1-logex+C
logelogeex-1+C
loglogx-1+C
logelogex+x+C
loglogx+C
Explanation for correct answer:
Solving this by using the substitution method
t=logx⇒dt=1xdx...[∵ddxlogx=1x]∫1xlogxdx=∫t.dt=t22=12logx2+C=logx+C...[∵(loga)n=nloga]
∫1xlogxdx=∫1t.dt=logt+c=loglogx+C
Hence, option (E) is the correct answer.