∫(cosx+xsinx)(x2+xcosx)dx=
log(sinx)(1+cosx)+c
log(sinx)(x+cosx)+c
log(2sinx)(x+cosx)+c
log(xsinx)(x+cosx)+c
log(x)(x+cosx)+c
Explanation for the correct option:
Evaluate the given integral:
∫cosx+xsinxx2+xcosxdx
Adding and subtracting x in the numerator
∫cosx+xsinx+x-xx2+xcosxdx=∫x+cosxx2+xcosxdx-∫x-xsinxx2+xcosx=∫x+cosxxx+cosxdx-∫x-xsinxxx+cosxdx=∫dxx-∫x-xsinxxx+cosxdx=logx-∫x1-sinxxx+cosxdx=logx-∫1-sinxx+cosxdx
Let z=x+cosx⇒dz=1-sinxdx
=logx-∫dzz=logx-logz+c=logx-logx+cosx+csubstitutingthevalueofz=logxx+cosx+c∵loga-logb=logab
Therefore, ∫(cosx+xsinx)(x2+xcosx)dx=log(x)(x+cosx)+c
Hence, the correct answer is option (E).