wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate dx(cosx+3sinx)


A

12logx2+π12+c

No worries! We‘ve got your back. Try BYJU‘S free classes today!
B

12logx2-π12+c

No worries! We‘ve got your back. Try BYJU‘S free classes today!
C

12logtanx2+π2+c

No worries! We‘ve got your back. Try BYJU‘S free classes today!
D

12logtanπ12+x2+c

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D

12logtanπ12+x2+c


Explanation for the correct option.

Finding the integral.

Given, dx(cosx+3sinx)

Solving the integral,

dxcosx+3sinx=dx212cosx+32sinx=12dxsinπ6cosx+cosπ6sinx=12dxsinπ6+x=12cosecπ6+xdx=12logcosecπ6+xcotπ6+x+c=12log(1cosπ6+xsinπ6+x+c=12log2sin2π12+x22sinπ12+x2cosπ12+x2+c=12logtanπ12+x2+c

Hence, the correct answer is Option (D)


flag
Suggest Corrections
thumbs-up
44
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Extrema
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon