Evaluate ∫dx(cosx+3sinx)
12logx2+π12+c
12logx2-π12+c
12logtanx2+π2+c
12logtanπ12+x2+c
Explanation for the correct option.
Finding the integral.
Given, ∫dx(cosx+3sinx)
Solving the integral,
∫dxcosx+3sinx=∫dx212cosx+32sinx=12∫dxsinπ6cosx+cosπ6sinx=12∫dxsinπ6+x=12∫cosecπ6+xdx=12logcosecπ6+x−cotπ6+x+c=12log(1−cosπ6+xsinπ6+x+c=12log2sin2π12+x22sinπ12+x2cosπ12+x2+c=12logtanπ12+x2+c
Hence, the correct answer is Option (D)
Evaluate :cos48°-sin42°