∫dx(sinx-cosx+2)=
-12tanx2+π8+c
12tanx2+π8+c
12cotx2+π8+c
-12cotx2+π8+c
Explanation for the correct option:
Evaluating the integral:
LetI=∫dxsinx−cosx+2=∫dx212sinx−12cosx+2[Multiplyanddividesinx−cosxby2]=12∫dx−cosx+π4+1=12∫dx2sin2x2+π8[cos(2x)=1-2sin2(x)]=122∫cosec2x2+π8[1sinx=cosecx]=122∫−cotx2+π812+C=−12cotx2+π8+C
Hence, option (D) is the correct answer.