∫exlogaexdx=
axlogae+c
ex1+logea+c
(ae)x+c
aexlogeae+c
axexlogxe+c
Explanation for the correct option:
Finding the given integral:
∫exlogaexdxLet'stakeax=exloga=∫ax⋅exdx=∫aexdx=aexlogeae+c∵∫axdx=axloga+c
Hence, the correct answer is option (D).