∫f'xfxdx=_______+c; fx≠0
12fx
2fx
Explanation for the correct option:
Finding the value of ∫f'xfxdx
Consider the given Equation as,
I=∫f'xfxdx
Let,
fx=tf'xdx=dt [differentiating]
Then I becomes,
I=∫dttI=∫t-12dt
We know that
∫xndx=xn+1n+1+C
I=∫t-12dt=t-12+1-12+1+c=t1212+cI=2t12+c
Substitute t=fx then the above equation becomes,
I=2fx12+c⇒I=2fx+c
Hence , the correct answer is Option (B).
The general solution of a differential equation of the type dxdy+P1x=Q1 is
(a) ye∫P1 dy=∫(Q1e∫P1 dy)dy+C
(b) ye∫P1 dx=∫(Q1e∫P1 dx)dx+C
(c) xe∫P1 dy=∫(Q1e∫P1 dy)dy+C
(d) xe∫P1 dx=∫(Q1e∫P1 dx)dx+C