∫sin(2x)sin2(x)+2cos2(x)dx=?
–log(1+sin2x)+c
log|1+cos2x|+c
–log|1+cos2x|+c
log(1+tan2x)+c
Explanation For The Correct Option:
Evaluating the integral:
∫sin(2x)sin2(x)+2cos2(x)dx
⇒∫sin(2x)1-cos2(x)+2cos2(x)dx[∵sin2x=1-cos2(x)]⇒∫sin(2x)1+cos2(x)dx
Substituting t=1+cos2(x) and also substituting dx after differentiating t w. r. t x
⇒dt=-2sin(x)cos(x)dx⇒-2sin(2x)dx=dt[∵sin(x)=2sin(x)cos(x)]
⇒-∫dtt=-log|t|+C[Cisintegratingconstants]=-log|1+cos2(x)|+C[substitutingt=1+cos2(x)]
Hence, option (C) is the correct answer.