Integral of ∫√tanxdx
Given ∫√tanxdx
Let tanx=t2
⇒sec2xdx=2tdt [∵sec2x=1+tan2]
⇒dx=2t(1+t4)dt
Now given expression can be written as ∫√tanxdx=∫2t2(1+t4)dt
⇒∫(t2+1)+(t2−1)](1+t4)dt
⇒∫(t2+1)(1+t4)+(t2−1)(1+t4)dt
⇒∫(1+1t2)(t2+1t2)dt+∫(1−1t2)(t2+1t2)dt
⇒∫(1+1t2)(t−1t)2+2dt+∫(1−1t2)(t+1t)2−2dt......(i)
Let t−1t=u for the first integral ⇒(1+1t2)dt=du
and t+1t=v for the 2nd integral ⇒(1−1t2)dt=dv
Substitute above integrals in equation(i), we get
=∫du(u2+2)+∫dv(v2−2)
=1√2tan−1(u√2)+12√2log|(v−√2)(v+√2)|+c
=(1√2)tan−1[(t2−1)t√2]+(12√2)log(t2+1−t√2)(t2+1+t√2)+c
=(1√2tan−1[(tanx−1)√2tanx]+12√2log[tanx+1−√(2tanx)][tanx+1+√(2tanx)]+c