Evaluate:∫(x+1)(x+2)7(x+3)dx
(x+2)1010–(x+2)88+c
(x+2)22–(x+2)88-(x+3)22+c
(x+1)1010+c
(x+1)22+(x+2)88+(x+3)22+c
(x+2)99–(x+2)77+c
Evaluating the integral ∫(x+1)(x+2)7(x+3)dx
⇒∫(x+2-1)(x+2)7(x+2+1)dx
substituting t=x+2 and dx=dt we get
⇒∫t7(t-1)(t+1)dt⇒∫t7(t2-12)dt∵(a-b)(a+b)=a2-b2⇒∫t9-t7dt⇒∫t9dt-∫t7dt⇒t1010-t88+C[Cisanintegratingconstant]⇒x+21010-x+288+C[substitutingbackt=(x+2)]
Hence, option A is the correct answer.