wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate :xex(1+x)2dx


A

-ex(x+1)+c

No worries! We‘ve got your back. Try BYJU‘S free classes today!
B

ex(x+1)+c

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C

xex(x+1)+c

No worries! We‘ve got your back. Try BYJU‘S free classes today!
D

-xex(x+1)+c

No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B

ex(x+1)+c


Evaluating the integral

let, I=xex(1+x)2dx

(x+1-1)ex(1+x)2dx(x+1)ex(1+x)2-ex(1+x)2dxex(1+x)-ex(1+x)2dx.......(i)

Substituting (1+x)=t then x=t-1

differentiating it w.r.t x we get dx=dt

et-1t-et-1t2dt[from(i)]1eett-1-ett-2dt1eett-1dt-ett-2dt....(ii)

Applying the formula of integration by parts into (ii)

f(x).g(x).dx=f(x).g(x).dx-(f'(x).g(x).dx).dx

1et-1etdt-ddtt-1etdtdt-t-2etdt1et-1et+t-2etdt-t-2etdt+c1et-1et+c[c=constant]1e(1+x)-1e1+x+c[substitutingbackt=x+1]ex(1+x)+c

Hence option B is the correct answer.


flag
Suggest Corrections
thumbs-up
8
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Parts
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon