Integral sin4x.
Find the integral
Given, sin4x
Let , I=∫sin4xdx
. =∫sin2x2dx
We know that,
sin2x=1-cos2x2
Therefore, sin2x2=1-cos2x22
Now,
=14∫1-cos2x2
=14∫1-2cos2x+cos22xdx
⇒cos2x=2cos2x-1⇒2cos2x=cos2x+1So,2cos22x=cos4x+1⇒cos22x=cos4x+12
So,
=14∫(1-2cos2x)+cos4x+12dx
=x4-14sin2x+132sin4x+x8+c
=3x8-14sin2x+132sin4x+c
Hence , integral of sin4x is 3x8-14sin2x+132sin4x+c.
(i) Find the integral: ∫dxx2−6x+13 (ii) Find the integral: ∫dx3x2+13x−10 (iii) Find the integral: ∫dx√5x2−2x