wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Integral xsinxsec3xdx is equal to


Open in App
Solution

Step 1: Find ‘u’ and ‘v’

Given, xsinxsec3x

Now,

We know that , u.vdx=uvdx-dudxvdxdx

Now ,

xsinxsec3xdx=x.sinx.1cos3xdx=x.tanx.sec2xdx=xsecxsecxtanxdx-1·secxsecxtanxdxdx[u=x,v=tanx.sec2x]

Step 2: Find the value of secxsecxtanxdx

Put secx=t

secxtanxdx=dtsecxsecxtanxdx=tdt=t22=sec2x2xsinxsec3xdx=xsec2x2-sec2x2dx=xsec2x2-tanx2+Csec2x=tanx+C

Hence , integral of xsinxsec3xdx is xsec2x2-tanx2+C.


flag
Suggest Corrections
thumbs-up
5
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebra of Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon