Integrate ∫11+sinxdx ?
Solve the given integral
Given, ∫11+sinxdx
Multiplying numerator and denominator by 1-sinx we get ,
∫11+sinxdx =∫1-sinx1-sin2xdx
We know that,
sin2x+cos2x=1⇒cos2x=1-sin2x
Now,
∫1-sinx1-sin2xdx=∫1-sinxcos2xdx
=∫1cos2x-sinxcosx×cosxdx
=∫sec2x-tanxsecxdx=tanx-secx+C
Hence, Integral ∫11+sinxdx is Integral tanx-secx+C.