Integrate ∫1+tanx1-tanxdx
Solve the given integration
Given, ∫1+tanx1-tanxdx
We know that,
tanx=sinxcosx
Now ,
∫1+tanx1-tanxdx =∫sinx+cosxcosx-sinxdx
Put , t=cosx-sinx
On differentiating we get,
-dt=(sinx+cosx)dx
Now,
I=∫sinx+cosxcosx-sinxdxI=-dttI=-logt+CI=-logcosx+sinx+C
Hence , Integral ∫1+tanx1-tanxdx is -logcosx+sinx+C.