∫x3=x+1x2−1dx⇒∫2x+1(x2−1)+∫xdx⇒2∫xdx(x2−1)+∫dxx2−12+∫xdxlet(x2−1)=t2xdx=dtdx=dt2x⇒∫dtt+12log∣∣∣x−1x+1∣∣∣+x22+C⇒logt+12log∣∣∣x−1x+1∣∣∣+x22+C⇒log(x2−1)+12log∣∣∣x−1x+1∣∣∣+x22+C
Integrate the rational functions. ∫(x2+1)(x2+2)(x3+3)(x2+4)dx
The factorization of x3+1 is
Integrate the following functions w.r.t. x.
∫1(x2+1)(x2+4)dx.