wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Integrate:
π0xdx1+sinx ?

Open in App
Solution

Let the given integral be,
I=π0xdx1+sinx(1)
Since, a0f(x)dx=a0f(ax)dx
I=π0πx1+sinxdx(2)
Now, Adding (1) and (2) we get,
I+I=π0x1+sinxdx+π0πx1+sinxdx2I=π0x+πx1+sinxdx2I=π0π1+sinxdxI=π2π011+sinxdxI=π2π011+sinxdx=π2π0(11+sinx×1sinx1sinx)dx=π2π0(1sinx1sin2x)dx=π2π0(1sinxcos2x)dx=π2π0[1cos2xsinxcos2x]dx=π2π0[sec2xsinxcosxcosx]dx=π2π0[sec2xtanxsecx]dx=π2[π0sec2xdxπ0tanxsecxdx]=π2[[tanx]π0[secx]π0]=π2[[tanπtan0][secπsec0]]=π2[[00][11]]=π2[0(2)]=π2×2=ππ0xdx1+sinx=π.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon