The equation of the value is,
u=ln(cos(x)),
du=−sin(x)cos(x)
dv=cos(x),,
v=sin(x)I
Therefore u∗v−int(v∗du)=ln(cos(x))∗sin(x)−sin(x)+ln(sec(x)+tan(x))
now evaluating at π/2 weget,
=lncos(π2)−1+lnsec(π2)+lntan(π2)
=lncos(π2)−1+ln(1+sin)(π2)(cosπ2)
=ln(1+sin(π2))−1=ln(2)−1