∫dx3x2+13x−10
=∫dx3x2+15x−2x−10
=∫dx3x(x+5)−2(x+5)
=∫dx(x+5)(3x−2)
Consider 1(x+5)(3x−2)=Ax+5+B3x−2
⇒1=A(3x−2)+B(x+5)
Put x=−5
⇒1=A(3×−5−2)+0
⇒1=A(−15−2)
∴A=−117
Put x=0
⇒1=A(0−2)+B(0+5)
⇒−2A+5B=1
⇒−2×−117+5B=1
⇒217+5B=1
⇒5B=1−217=17−217=1517
∴B=317
∴∫dx3x2+13x−10
=−117∫dxx+5+317∫dx3x−2
=−117log(x+5)+317×13log(3x−2)
=−117log(x+5)+117log(3x−2)+c
=117log(3x−2x+5)+c