⇒ LCM of 2 and 3=6
Thus x=t6 equation (1)
dx=6t5 dt equation (2)
∴ ∫dxx1/2+x1/3=I
Now I=∫6t2 dtt3+t2
=∫6t5dtt2(t+1)
=6∫t3dtt+1
=6∫(t3+1)−1 dtt+1
=6∫(t2−t+1−1t+1)dt
=6[t23−t22+t−log|t+1|]+C
=6[√x3−x1/32+x1/6−log|x1/6+1|]+C
Ans: 6[√x3−x1/32+x1/6−log|x1/6+1]+C