∫dx1+x2+x4=14∫4dxx4+x2+1
=14[∫(2−2x2)dxx4+x2+1+∫(2+2x2)dxx4+x2+1]
x4+x2+1=(x2+x+1)(x2−x+1)
=14[{∫2x+1x2+x+1dx−∫(2x−1)dxx2−x+1}]+14[{∫dxx2+x+1+∫dxx2−x+1}]
=14[ln(x2+x+1)−ln(x2−x+1)]+14⎡⎢
⎢⎣∫dx(x+12)2+(√32)2+∫dx(x−12)2+(√32)2⎤⎥
⎥⎦
=14[ln(x2+x+1)−ln(x2−x+1)]+14[2√3tan−1(2x+1√3)+2√3tan−1(2x−1√3)]
=14ln(x2+x+1)−14ln(x2−x+1)+12√3tan−1(2x+1√3)+12√3tan−1(2x−1√3)+C