wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Integrate 1x4+x2+1

Open in App
Solution

dx1+x2+x4=144dxx4+x2+1
=14[(22x2)dxx4+x2+1+(2+2x2)dxx4+x2+1]
x4+x2+1=(x2+x+1)(x2x+1)
=14[{2x+1x2+x+1dx(2x1)dxx2x+1}]+14[{dxx2+x+1+dxx2x+1}]
=14[ln(x2+x+1)ln(x2x+1)]+14⎢ ⎢dx(x+12)2+(32)2+dx(x12)2+(32)2⎥ ⎥
=14[ln(x2+x+1)ln(x2x+1)]+14[23tan1(2x+13)+23tan1(2x13)]
=14ln(x2+x+1)14ln(x2x+1)+123tan1(2x+13)+123tan1(2x13)+C

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Irrational Algebraic Fractions - 2
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon