Consider the given integral.
I=∫dx4sin2x+9cos2x
I=∫dx4sin2x+4cos2x+5cos2x
I=∫dx4+5cos2x
I=∫dx4+5sec2x
I=∫sec2xdx4sec2x+5
I=∫sec2xdx4(1+tan2x)+5
I=∫sec2xdx4tan2x+9
I=14∫sec2xdxtan2x+94
Let t=tanx
dt=sec2xdx
Therefore,
I=14∫dtt2+(32)2
I=14∫dt(32)2+t2
I=14⎛⎜ ⎜ ⎜⎝132tan−1⎛⎜ ⎜ ⎜⎝t32⎞⎟ ⎟ ⎟⎠⎞⎟ ⎟ ⎟⎠+C
I=14(23tan−1(2t3))+C
I=16tan−1(2t3)+C
On putting the value of t, we get
I=16tan−1(2tanx3)+C
Hence, this is the answer.