wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Integrate :
14sin2x+9cos2xdx

Open in App
Solution

Consider the given integral.


I=dx4sin2x+9cos2x


I=dx4sin2x+4cos2x+5cos2x


I=dx4+5cos2x


I=dx4+5sec2x


I=sec2xdx4sec2x+5


I=sec2xdx4(1+tan2x)+5


I=sec2xdx4tan2x+9


I=14sec2xdxtan2x+94



Let t=tanx


dt=sec2xdx



Therefore,


I=14dtt2+(32)2


I=14dt(32)2+t2


I=14⎜ ⎜ ⎜132tan1⎜ ⎜ ⎜t32⎟ ⎟ ⎟⎟ ⎟ ⎟+C


I=14(23tan1(2t3))+C


I=16tan1(2t3)+C



On putting the value of t, we get


I=16tan1(2tanx3)+C



Hence, this is the answer.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Summation by Sigma Method
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon