Use Pythagorean Identities
sin2x=21−2cos2x
∫12−∫cos2x2dx
Use Sum Rule ∫f(x)+g(x)dx=∫f(x)dx+∫g(x)dx
∫12dx−∫cos2x2dx
Use this rule:∫adx=ax+C
2x−∫cos2x2dx
Use Constant Factor Rule ∫cf(x)dx=c∫f(x)dx
2x−21∫cos2xdx
Use Integration by Substitution on ∫cos2xdx
Letu=2x,du=2dx,thendx=12du
Using u and du above,rewrite∫cos2xdx
∫cosu2du
Use Constant Factor Rule ∫cf(x)dx=c∫f(x)dx
12∫cosudu
The integral of\cos { u } is\quad sinu
Substituteu=2xback into the original integral\quad 2sin2x2
Rewrite the integral with the completed substitutionx2−sin2x4
Addconstantx2−sin2x4+C