wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Integrate:
sinx2dx

Open in App
Solution

Use Pythagorean Identities sin2x=212cos2x

12cos2x2dx

Use Sum Rule f(x)+g(x)dx=f(x)dx+g(x)dx

12dxcos2x2dx

Use this rule:adx=ax+C

2xcos2x2dx

Use Constant Factor Rule cf(x)dx=cf(x)dx

2x21cos2xdx

Use Integration by Substitution on cos2xdx

Letu=2x,du=2dx,thendx=12du

Using u and du above,rewritecos2xdx

cosu2du

Use Constant Factor Rule cf(x)dx=cf(x)dx

12cosudu

The integral of\cos { u } is\quad sinu​

Substituteu=2xback into the original integral\quad ​2sin2x2

Rewrite the integral with the completed substitutionx2sin2x4

Addconstantx2sin2x4+C

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Arithmetic Progression
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon