∫√1−t2dt
let t=sinθ⇒θ=sin−1(t) and cosθ=√1−sin2θ
=√1−t2
dt=cosθdθ
∫√1−sin2θcosθdθ=∫cosθ.cosθ.dθ
=∫cos2θdθ
=∫(1+cos2θ2)dθ
=12∫dθ+12∫cos2θdθ
=12θ+12.sin2θ2+C
=θ2+sin2θ4+c
=12sin−1(t)+2sincosθ4+c
=12sin−1(t)+12.t√1−t2+c
∫√1−t2dt=12sin−1(t)+t2√1−t2+c (where t=sinθ)