Integrate ∫0π4log1+tanxdx.
Solve the given integral by using properties
Using the Property of definite Integral ∫0afxdx=∫0afa-xdx
Let, I=∫0π4log1+tanx
By using the property, we get,
⇒I=∫0π4log1+tanπ4-x∵tana-b=tana-tanb1+tanatanb⇒I=∫0π4log1+1-tanx1+tanx⇒I=∫0π4log21+tanx∵logab=loga-logb⇒I=∫0π4log2-∫0π4log1+tanx⇒I=∫0π4log2-I⇒2I=π4log2⇒I=π8log2
Hence, integration of ∫0π4log1+tanx is π8log2.
Integrate ∫-π4π4logsinx+cosxdx.
Integrate ∫0π2logsinxdx.
Arrange 12,13,34, 56 in ascending order.
Evaluate the value of following:-
111+411+311+211
Solve it :-
a-235=-412