wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Integrate 0π4log1+tanxdx.


Open in App
Solution

Solve the given integral by using properties

Using the Property of definite Integral 0afxdx=0afa-xdx

Let, I=0π4log1+tanx

By using the property, we get,

I=0π4log1+tanπ4-xtana-b=tana-tanb1+tanatanbI=0π4log1+1-tanx1+tanxI=0π4log21+tanxlogab=loga-logbI=0π4log2-0π4log1+tanxI=0π4log2-I2I=π4log2I=π8log2

Hence, integration of 0π4log1+tanx is π8log2.


flag
Suggest Corrections
thumbs-up
7
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon