Integrate ∫0π2logsinxdx.
Integration of the given Expression:
∫0afxdx=∫0afa-xdx.
∫02afxdx=∫0afxdx+∫0af2a-xdx
Let I=∫0π2logsinxdx...i
By property 1
I=∫0π2logsinπ2-xdx∵sinπ2-x=cosx⇒I=∫0π2logcosxdx...iii+ii⇒2I=∫0π2logcosx+logsinxdx∵logab=loga+logb⇒2I=∫0π2logcosxsinxdx∵sin2x=2sinxcosx⇒2I=∫0π2logsin2x2dx
Let 2x=t
Differentiate both sides
⇒2dx=dt Replacing the value of dx
⇒2I=12∫0πlogsint2dt
By property 2
∫0πlogsint2dt=∫0π2logsint2dt+∫0π2logsinπ-t2dtsinπ-t=sint⇒2I=12∫0π22logsint2dt⇒2I=∫0π2logsint-∫0π2log2∵logab=loga-logb⇒2I=I-π2log2⇒I=-π2log2
Hence ∫0π2logsinx is -π2log2.
Integrate ∫-π4π4logsinx+cosxdx.
Integrate ∫0π4log1+tanxdx.
Arrange 12,13,34, 56 in ascending order.
Evaluate the value of following:-
111+411+311+211
Evaluate the value of following :-
25-65+75