Integrate ∫sin2xdx.
Solve the given integral function by integration
Let, I=∫sin2xdx
∫sin2xdx=∫1-cos2x2dx∵cos2x=1-2sin2x⇒I=∫dx2-12∫cos2xdx∵∫dx=x+C,∫coscx=sincxc+C⇒I=x2-sin2x4+C
Hence, ∫sin2xdx is integrated as x2-sin2x4+C.