Integrate ∫sin3xcos3xdx
Integrate the given integral function
Let, I=∫sin3xcos3xdx
Multiply both sides by 2
⇒I=12∫2sin3xcos3xdx
Let sin2x=t
Differentiate both sides,
⇒2sinxcosxdx=dt...iI=12∫t1-t2sinxcosxdxsin2x+cos2x=1
By using (i),
⇒I=12∫t1-tdt⇒I=12∫tdt-12∫t2dt∫xn=xn+1n+1⇒I=t24-t36⇒I=sin4x4-sin6x6+C
Hence, ∫sin3xcos3xdx is integrated as sin4x4-sin6x6+C.