I=∫x2e3xdx
By applying integration by parts
According to it let u and v be two functions defined in x then,
∫u(x)v(x)dx=u(x)∫v(x)dx−∫(d(u(x))dx∫v(x)dx)dx (1)
Let v=x2 and u=e3x
Then according to the formulae in equation (1)
∫x2e3xdx=x2∫e3xdx−∫(d(x2)dx∫e3xdx)dx (2)
Since ∫e3xdx=e3x3 and ddx(x2)=2x
Equation (2) is reduced to,
∫x2e3xdx=x2e3x3−∫(2xe3x3)dx
=x2e3x3−23I1 (3)
Solve I1
I1=∫xe3xdx
Let v=x and u=e3x
Using formula in equation (1)
∫xe3x=x∫exdx−∫(d(x)dx∫e3xdx)dx (4)
Since ∫e3xdx=e3x3 and d(x)dx=1
Equation (4 )is reduced to,
I=x2e3x3−∫(e3x3)dx
=x2e3x3−e3x9
Substitute the value of I2 in equation (3)
I=x2e3x3−23(x2e3x3−e3x9)
=x2e3x3−2x2e3x9+2e3x27
=x2e3x9+2e3x27
Thus, I=∫x2e3xdx is x2e3x9+2e3x27+C where C is integration constant.