1(x2+1)(x2+4)=Ax+B(x2+1)+Cx+D(x2+4)
⇒1=(Ax+B)(x2+4)+(Cx+D)(x2+1)
⇒1=Ax3+4Ax+Bx2+Cx3+Cx+Dx2+D
Equating the coefficients of x3,x2,x, and constant term, we obtain
A+C=0
B+D=0
4A+C=0
4B+D=1
On solving these equations, we obtain
A=0,B=13,C=0, and D=−13
From equation (1), we obtain
1(x2+1)(x2+4)=13(x2+1)−13(x2+4)
∴∫1(x2+1)(x2+4)dx=13∫1x2+1dx−13∫1x2+4dx
=13tan−1x−13⋅12tan−1x2+C
=13tan−1x−16tan−1x2+C