=∫1√25(925−x2)dx
=15∫1√925−x2dx =15∫1√(35)2−x2dx =15sin−1⎛⎜ ⎜⎝x35⎞⎟ ⎟⎠+C [∵∫dx√a2−x2=sin−1(xa)+C] =15sin−1(5x3)+C Where C is constant of integration.