wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Integrate the function: 5x+3x2+4x+10

Open in App
Solution

5x+3x2+4x+10dx
=5(x+35)x2+4x+10dx
=522x+65x2+4x+10dx
=522x+44+65x2+4x+10dx
=522x+4145x2+4x+10dx
=522x+4x2+4x+10dx+52145x2+4x+10dx
=522x+4x2+4x+10dxI1
7dxx2+4x+10dxI2
For I1
I1=522x+4x2+4x+10dx
Let x2+4x+10=t2
Differentiate both sides w.r.t.x
2x+4=2tdtdx(2x+4)dx=2tdt
I1=522x+4x2+4x+10dx
I1=522tdtt
I1=51.dt
I1=5t+C1
I1=5x2+4x+10+C1
For I2
I2=7x2+4x+10.dx
I2
=71x2+4x+2222+10.dx
I2=71(x+2)2+6.dx
I2=71(x+2)2+6.dx
I2=71(x+2)2+(6)2.dx
I2=7[logx+2+(x+2)2+(6)]+C2
[dxx2+a2=logx+x2+a2+C]
I2=7log|x+2+x2+4x+4+6|+C2
I2=7log|x+2+x2+4x+10|+C2
5x+3x2+4x+10dx
=I1I2
=5x2+4x+10+C1
7log|x+2+x2+4x+10|C2
=5x2+4x+107log|x+2+x2+4x+10+C
Where C=C1C2


flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon