∫5x+3√x2+4x+10dx
=5∫(x+35)√x2+4x+10dx
=52∫2x+65√x2+4x+10dx
=52∫2x+4−4+65√x2+4x+10dx
=52∫2x+4−145√x2+4x+10dx
=52∫2x+4√x2+4x+10dx+52∫−145√x2+4x+10dx
=52∫2x+4√x2+4x+10dxI1
−7∫dx√x2+4x+10dxI2
For I1
I1=52∫2x+4√x2+4x+10dx
Let x2+4x+10=t2
Differentiate both sides w.r.t.x
2x+4=2tdtdx⇒(2x+4)dx=2tdt
⇒I1=52∫2x+4√x2+4x+10dx
⇒I1=52∫2tdtt
⇒I1=5∫1.dt
⇒I1=5t+C1
⇒I1=5√x2+4x+10+C1
For I2
I2=∫7√x2+4x+10.dx
⇒I2
=7∫1√x2+4x+22−22+10.dx
⇒I2=7∫1√(x+2)2+6.dx
⇒I2=71√(x+2)2+6.dx
⇒I2=7∫1√(x+2)2+(√6)2.dx
⇒I2=7[log∣∣∣x+2+√(x+2)2+(√6)∣∣∣]+C2
[∵∫dx√x2+a2=log∣∣x+√x2+a2∣∣+C]
⇒I2=7log|x+2+√x2+4x+4+6|+C2
⇒I2=7log|x+2+√x2+4x+10|+C2
∫5x+3√x2+4x+10dx
=I1−I2
=5√x2+4x+10+C1
−7log|x+2+√x2+4x+10|−C2
=5√x2+4x+10−7log|x+2+√x2+4x+10+C
Where C=C1−C2