Let I=∫cos x√4−sin2x ...(1)
Substituting sin x=t
Differentiating with respect tot
⇒cos xdxdt=1⇒cos x dx=dt
From equation (1)
I=∫1√4−t2dt
⇒I=sin−1(t2)+C
[∵∫1√a2−x2dx=sin−1xa+C]
∴I=sin−1(sin x2)+C
Hence,
∫cos x√4−sin2xdx=sin−1(sin x2)+C
Where C is constant of integration.