∫x+2√x2+2x+3dx
=12∫2x+4√x2+2x+3dx
=12∫2x+2+2√x2+2x+3dx
=12∫2x+2√x2+2x+3dx
+12∫2√x2+2x+3dx
==12∫2x+2√x2+2x+3dxi1
+∫dx√x2+2x+3dxi2
For I1
I1=12∫2x+2√x2+2x+3.dx
Let x2+2x+3=t2
Differential both sides w.r.t.x
2x+2=25dtdx⇒(2x+2)dx=2tdt
⇒I1=12∫2tdtt
⇒I1=∫1.dt
⇒I1=t+C1
⇒I1=√x2+2x+3+C1
For I2
I2=∫1√x2+2x+3.dx
⇒I2=∫1√x2+2x+1+2.dx
⇒I2=∫1√(x+1)2+2.dx
⇒I2=∫1√(x+1)2+(√2)2.dx
⇒I2=log|x+1+√(x+1)2+(√2)2|+C2
[∵∫dx√x2+a2=log|x+√x2+a2|+C]
⇒I2=log|x+1+√x2+2x+1+2|+C2
⇒I2=log|x+1+√x2+2x+3|+C2
∫(x+2)√x2+2x+3.dx
=I1+I2
=√x2+2x+3+C1+log|x+1+√x2+2x+3|+C2
=√x2+2x+3+log|x+1+√x2+2x+3|+C
Where C=C1+C2