wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Integrate the function e2xsinx

Open in App
Solution

Let I=e2xsinxdx .......(1)
Integrating by parts, we obtain
I=sinxe2xdx{(ddxsinx)e2xdx}dx
I=sinxx2x2cosxe2x2dx
I=e2xsinx212e2xcosxdx
Again integrating by parts, we obtain
I=e2xsinx212[cosxe2xdx{(ddxcosx)e2xdx}dx]
I=e2xsinx212[cosxe2xe(sinx)e2x2dx]
I=e2xsinx212[e2xcosx2+12e2xsinxdx]
I=e2xsinx2e2xcosx414I [From (1)]
I+14I=e2xsinx2e2xcosx4
54I=e2xsinx2e2xcosx4
I=45[e2xsinx2e2xcosx4]+C
I=e2x5[2sinxcosx]+C

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Derivative of Standard Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon