Let I=∫e2xsinxdx .......(1)
Integrating by parts, we obtain
I=sinx∫e2xdx−∫{(ddxsinx)∫e2xdx}dx
⇒I=sinx⋅x2x2−∫cosx⋅e2x2dx
⇒I=e2xsinx2−12∫e2xcosxdx
Again integrating by parts, we obtain
I=e2x⋅sinx2−12[cosx∫e2xdx−∫{(ddxcosx)∫e2xdx}dx]
⇒I=e2x⋅sinx2−12[cosx⋅e2xe−∫(−sinx)e2x2dx]
⇒I=e2x⋅sinx2−12[e2xcosx2+12∫e2xsinxdx]
I=e2x⋅sinx2−e2xcosx4−14I [From (1)]
⇒I+14I=e2x⋅sinx2−e2xcosx4
⇒54I=e2xsinx2−e2xcosx4
⇒I=45[e2xsinx2−e2xcosx4]+C
⇒I=e2x5[2sinx−cosx]+C