Integrate the function. ∫√1−4x2dx.
Let I=∫√1−4x2dx =∫√4(14−x2)dx=2∫√((12)2−x2)dx[∵∫√a2−x2dx=x2√a2−x2+a22sin−1xa+C]=2.x2√14−x2+14.22sin−1x12+C⇒I=x2√1−4x2+14sin−1(2x)+C
Integrate the following functions. ∫x9−4x2dx.