Integrate the function. ∫√x2+4x−5dx.
Let I=∫√x2+4x−5−22+22dx=∫√(x+2)2−5−4dx =∫√(x+2)2−(3)2dx⇒I=x+22√x2+4x−5−92log|(x+2)+√x2+4x−5|+C[∵∫√(x2−a2)dx=x2√x2−a2−a22log|x+√x2−a2|]
Integrate the function. ∫√x2+4x+6dx.
Integrate the following functions. ∫x+3x2−2x−5dx.
Evaluate the following integral: